Selasa, 25 November 2014

Sekilas Seputar Semikonduktor

Semikonduktor telah memberikan pengaruh besar dan menjadi bagian yang tak terpisahkan dalam peradaban manusia saat ini. Kita bisa menemukan semikonduktor pada jantung chip mikroprosesor hingga pada transistor. Nyaris semua peralatan elektronik bergantung sepenuhnya pada keberadaan semikonduktor. Sementara itu, kebanyakan chip dan transistor berbasis semikonduktor terbuat dari unsur semikonduktor silikon. Mungkin kita pernah mendengar ekspresi seperti Silicon Valley (“Lembah Silikon”) dan Silicon Economy (“Ekonomi Silikon”), itulah sebabnya silikon merupakan unsur yang sangat penting pada setiap peralatan elektronik.
Silikon merupakan unsur yang mudah ditemui. Sebagai contoh, silikon merupakan penyusun utama dari pasir danquartz. Jika kita perhatikan silikon pada tabel periodik, kita bisa lihat posisinya berada di sebelah aluminium, di bawah karbon, dan di atas germanium.
Posisi karbon, silikon, dan germanium pada tabel periodik (gambar dari http://howstuffworks.com).
Posisi karbon, silikon, dan germanium pada tabel periodik (gambar dari http://howstuffworks.com).
Karbon, silikon, dan germanium memiliki sifat yang unik pada struktur elektroniknya. Setiap unsur ini memiliki 4 elektron valensi. Sifat tersebut memungkinkan karbon, silikon, dan germanium membentuk kristal dengan keunggulan tertentu yang dapat dimanfaatkan dalam peralatan elektronik. Keempat elektron valensi membentuk ikatan kovalen yang sempurna dengan empat atom tetangga sehingga membentuk suatu kisi kristal. Pada karbon, bentuk kristalnya adalah intan, sedangkan pada silikon, bentuk kristalnya keperakan dan tampak seperti material logam.
Material logam cenderung bersifat sebagai konduktor yang baik untuk listrik karena biasanya logam memiliki elektron-elektron bebas yang bisa bergerak dengan mudah di antara atom-atom. Kelistrikan di sini tentunya melibatkan aliran elektron. Meskipun silikon tampak seperti logam, namun pada dasarnya silikon bukanlah konduktor yang baik. Seluruh elektron valensi pada kristal silikon terlibat dalam ikatan kovalen sempurna yang membuat elektron-elektron tersebut tidak bisa bergerak dengan bebas. Kristal silikon murni lebih dekat kepada sifat insulator, hanya sedikit arus listrik yang bisa melaluinya. Namun, kita bisa mengubah sifat kristal tersebut hanya dengan melalui sebuah proses yang disebut sebagai doping.
Dalam struktur kristal silikon, seluruh atom silikon berikatan secara sempurna dengan empat atom tetangganya. Tidak ada elektron bebas tersisa untuk mengalirkan arus. Hal ini mengakibatkan kristal silikon secara mendasar merupakan sebuah insulator.
Dalam struktur kristal silikon, seluruh atom silikon berikatan secara sempurna dengan empat atom tetangganya. Tidak ada elektron bebas tersisa untuk mengalirkan arus. Hal ini mengakibatkan kristal silikon secara mendasar merupakan sebuah insulator.
Dalam proses doping, pada dasarnya kita mencampurkan sejumlah kecil ketidakmurnian (impurity) ke dalam kristal silikon. Ada dua macam ketidakmurnian ini:
1) Tipe-n: Pada doping tipe-n, unsur fosfor atau arsenik ditambahkan ke dalam silikon dengan jumlah yang kecil. Fosfor dan arsenik masing-masing memiliki 5 elektron valensi sehingga ada 1 elektron yang tidak bisa memiliki tempat untuk berikatan di dalam kristal silikon. Elektron ini bebas bergerak ke sekitarnya. Kita hanya memerlukan sedikit saja ketidakmurnian untuk menghasilkan cukup banyak elektron bebas yang bisa membuat arus listrik mengalir di dalam silikon. Silikon tipe-n merupakan konduktor listrik yang baik. Karena elektron memiliki muatan negatif, dari situlah sebutan “tipe-n” berasal.
2) Tipe-p: Pada doping tipe-p, unsur boron dan galium merupakan pendoping yang biasa digunakan. Boron dan galium hanya memiliki 3 elektron valensi. Ketika unsur ini bercampur dengan kristal silikon, akan terbentuk suatu “lubang” (hole) pada kisi kristal. Lubang ini merupakan tempat yang tidak bisa terbentuk ikatan dari elektron silikon di dalamnya. Ketidakhadiran elektron pada lubang tersebut memberikan efek muatan positif. Oleh karena itu nama doping ini adalah “tipe-p”. Hole bisa mengalirkan arus. Sebuah hole akan menerima sebuah elektron dari tetangganya sehingga hole tampak bergerak sepanjang ruang. Silikon tipe-p dalam hal ini juga merupakan konduktor yang baik.
Meski hanya sejumlah kecil doping yang diberikan pada struktur kristal silikon murni, doping tipe-n ataupun tipe-p dapat mengubah kristal silikon dari sifat insulator menjadi konduktor. Oleh karena itu, kita menyebutnya sebagaisemikonduktor. Sebenarnya silikon tipe-n ataupun tipe-p tidaklah istimewa-istimewa amat, namun jika kita menggabungkan keduanya, akan muncul sifat yang sangat menarik pada persambungan semikonduktor tersebut. Sifat unik ini muncul pada perangkat elektronik bernama diode.
Diode merupakan perangkat semikonduktor paling sederhana yang mungkin dibuat. Sebuah diode memungkinkan arus untuk mengalir pada satu arah, tetapi tidak pada arah sebaliknya. Barangkali kita pernah melihat pintu putar pembatas di stadion atau pusat perbelanjaan yang hanya bisa dilalui ke satu arah tertentu dan menghambat orang untuk bergerak mundur kembali ke arah sebelumnya. Nah, diode bisa dibayangkan seperti pintu tersebut.
Sekarang perhatikan diagram berikut ini.
Pada skema ini arus listrik tidak akan mengalir di persambungan diode (gambar dari http://howstuffworks.com).
Pada skema ini arus listrik tidak akan mengalir di persambungan diode (gambar dari http://howstuffworks.com).
Meskipun semikonduktor tipe-n pada prinsipnya merupakan konduktor dan tipe-p juga merupakan konduktor, namun kombinasi keduanya pada persambungan diode seperti pada gambar tidak akan memberikan arus listrik. Elektron bermuatan negatif pada semikonduktor tipe-n akan tertarik ke kutub positif baterai, sedangkan hole bermuatan positif pada semikonduktor tipe-p akan tertarik ke kutub negatif baterai. Arus tidak mengalir karena masing-masing hole dan elektron bergerak di arah yang salah.
Jika kita sekarang balikkan arah kutub baterai, arus listrik dapat mengalir dengan sempurna. Alasannya adalah elektron bebas di dalam semikonduktor tipe-n akan ditolak oleh kutub negatif baterai, demikian pula hole di dalam semikonduktor tipe-p akan ditolak oleh kutub positif baterai. Pada persambungan diode, elektron bebas dan holetersebut kemudian dapat bertemu. Elektron akan mengisi lubang kekosongan yang dibuat hole. Peristiwa ini terjadi terus-menerus di sepanjang sambungan sehingga sebagai efeknya arus listrik dapat mengalir. Diode dapat dimanfaatkan dalam berbagai cara. Salah satu contohnya, setiap perangkat yang menggunakan baterai biasanya menyisipkan diode untuk mencegah kesalahan operasi yang terjadi akibat aliran arus pada arah yang salah. Diode secara sederhana akan memblok setiap arus yang meninggalkan baterai jika baterai tersebut dibalik arahnya. Dengan cara ini, perangkat elektronik yang sensitif terhadap arah aliran arus dapat terlindungi dan bekerja dengan optimal.
Tentunya ada pula keterbatasan diode disebabkan ketidaksempurnaan respon arus terhadap tegangan pada diode. Sebuah diode yang ideal diharapkan dapat memblok seluruh arus ketika diberikan panjar mundur (reverse-bias) dari suatu baterai. Namun, diode pada kenyataannya rata-rata masih membiarkan sekitar 10 mikroampere arus melewati dirinya pada kondisi tersebut. Bahkan, jika kita memberikan tegangan balik yang terlalu besar pada diode, bisa jadi sambungan diode tersebut rusak total dan akhirnya seluruh arus akan mengalir. Untungnya pada kebanyakan kasus, tegangan yang dibutuhkan untuk merusak diode tersebut masih jauh lebih besar daripada tegangan yang lazim dijumpai suatu sirkuit elektronik. Sementara itu, jika diode diberi panjar maju (forward-bias), pada kenyataannya kita tetap membutuhkan tegangan minimal agar arus dapat mengalir melalui persambungan diode. Untuk silikon, nilai tegangan tersebut berkisar 0,7 volt. Tegangan ini dibutuhkan untuk memulai proses kombinasi elektron dan holepada persambungan diode.
Karakteristik arus dan tegangan pada kebanyakan diode.
Karakteristik arus dan tegangan pada kebanyakan diode.
Selain diode, perangkat elektronik lainnya yang sangat bergantung pada teknologi semikonduktor adalah transistor. Transistor dan diode memiliki beberapa kesamaan sifat. Namun transistor memiliki sifat unik lain yang dihasilkan dari 3 komponen semikonduktor yang menyusunnya. Transistor paling sederhana dapat dibentuk sebagai suatusandwitch semikonduktor bertipe n-p-n ataupun p-n-p. Dengan struktur tersebut, transistor bisa berfungsi sebagai sakelar (switch) serta penguat (amplifier) sinyal listrik, yang disesuaikan dengan tegangan yang diberikan.
Skema dasar transistor.
Skema dasar transistor (gambar dari http://howstuffworks.com).
Dalam bentuk paling sederhananya, transistor tampak seperti dua buah diode yang disambungkan dan berimpit di tengahnya. Kita bisa menebak bahwa jika kita mengalirkan arus dari salah satu ujung transistor ke ujung lainnya tidak akan ada arus yang mengalir. Namun, jika kita berikan sedikit arus pada bagian tengah transistor, sejumlah arus yang lebih besar dapat mengalir melalui keseluruhan transistor.
Dengan sifat seperti itu, transistor menjadi komponen elektronik paling mendasar dalam berbagai rangkaian elektronik yang sangat kompleks. Chip pada perangkat-perangkat elektronik yang kita miliki saat ini tersusun dari jutaan transistor yang terintegrasi dengan sangat rapat dalam ruang yang kecil. Perkembangan fabrikasi chip ini, yang pada dasarnya bergantung pada sifat semikonduktor penyusunnya, kemudian menghasilkan beragam peralatan elektronik yang digunakan masyarakat dalam kehidupan sehari-hari.

LED Biru: Batu Bata Terakhir Sumber Cahaya Putih Berbasis LED

Pada awal bulan Oktober 2014 ini, penghargaan Nobel untuk bidang fisika diberikan kepada 3 ilmuwan asal Jepang, yaitu Isamu Akasaki, Hiroshi Amano, dan Shuji Nakamura (tetapi Nakamura sebenarnya telah beralih menjadi warga negara Amerika Serikat). Mereka bertiga dianggap sangat berkontribusi bagi perkembangan ilmu dan teknologi di dunia dengan penemuan LED biru.
Akasaki, Amano, dan Nakamura (gambar dari CBC.ca).
Akasaki, Amano, dan Nakamura (gambar dari CBC.ca).
Seperti yang kita ketahui, LED (singkatan dari light emitting diode) merupakan komponen kecil perangkat elektronik yang dapat memancarkan cahaya dengan warna tertentu. Sumber cahaya berbasis LED saat ini dapat ditemukan hampir di mana-mana, mulai dari penerangan rumah, lampu mobil, layar komputer (LED screen), lampu lalu lintas, hingga laser pointer.
LED biru (gambar dari physicsworld.com).
LED biru (gambar dari physicsworld.com).
Namun, kita mungkin bertanya-tanya mengapa harus penemuan LED berwarna biru yang mendapatkan penghargaan Nobel. Selain itu, bagaimana sebenarnya prinsip kerja dari LED biru ini dan LED lainnya secara umum?
“Batu Bata Terakhir”
Kalaulah kita ibaratkan LED biru ini sebagai penyusun suatu bangunan, dapat dikatakan bahwa LED biru merupakan sebuah batu bata terakhir. Untuk apa? LED biru ini rupanya syarat mutlak yang diperlukan untuk membuat sumber cahaya putih yang memadukan warna merah, hijau, dan biru.
LED merah, hijau, dan biru (gambar dari physicsworld.com).
LED merah, hijau, dan biru (gambar dari physicsworld.com).
LED merah dan LED hijau telah ada secara komersial sejak tahun 1960-an. Namun, LED biru baru berhasil direalisasikan awal 1990-an melalui kegigihan Profesor Akasaki yang telah bergelut dengan penelitian LED selama puluhan tahun, dengan dibantu mahasiswanya saat itu, Hiroshi Amano, di Universitas Nagoya, Jepang.
Di waktu yang berdekatan dengan penelitian Akasaki dan Amano, muncullah Shuji Nakamura sebagai seorang lulusan master Universitas Tokushima yang baru mulai bekerja di Nichia Chemical Jepang. Ia turut mencoba peruntungannya dalam mengembangkan LED biru dan meminta perusahaan tempatnya bekerja mengalokasikan dana khusus untuk riset tersebut.
Dimulai tahun 1988, Nakamura cukup beruntung tidak memerlukan waktu selama Akasaki dan Amano untuk menemukan ramuan yang tepat dan lebih efisien dalam menghasilkan LED biru. Hanya dalam 4 tahun saja ia berhasil membuat LED biru dengan cara yang lebih sederhana dan lebih murah dibandingkan metode dari Akasaki dan Amano.
Dari sisi historis, Akasaki dan Amano adalah pionir dari segala teknik fundamental dalam pengembangan LED biru. Namun, untuk komersialisasi produk, desain LED biru ala Nakamura yang muncul belakangan telah menjadi standar awal produk LED biru di pasaran. Perusahaan Nichia pun saat ini merupakan pemegang pasar LED paling dominan di dunia. Sayangnya, karena suatu konflik hak cipta, Nakamura mengundurkan diri dari Nichia. Ia bahkan beralih kewarganegaraan ke Amerika Serikat dan menjadi profesor fisika material di sana.
Terlepas dari berbagai kisah dan intrik menarik di balik penemuan LED biru, komponen elektronik ini segera saja membawa berbagai perubahan dalam kehidupan manusia di dunia. Produk komersial pertama yang jadi sasaran substitusi oleh keberadaan LED adalah alat penerangan kehidupan kita sehari-hari, apalagi kalau bukan lampu, seperti lampu pijar ataupun lampu neon/fluorosens.
Pada dasarnya, lampu bekerja dengan mengubah listrik menjadi cahaya. Namun, banyak bagian energi listrik yang terbuang menjadi panas dikarenakan sifat material penyusun lampu, alias efisiensinya rendah. Masalah efisiensi ini sudah menjadi ciri khas lampu pijar (bohlam) dan demikian pula dengan lampu neon meskipun lampu jenis ini masih jauh lebih efisien daripada lampu pijar.
Sebagai perbandingan kasar, lampu neon komersial secara umum dapat bertahan sekitar 10 ribu jam, sedangkan lampu pijar hanya bertahan sekitar 1000 jam. Lampu pijar hanya mampu mengubah sekitar 4% energi listrik yang diterimanya untuk menjadi cahaya, sedangkan lampu neon masih lumayan mampu mengubah sekitar 30% energi listrik yang diterimanya untuk menjadi cahaya.
Dalam hal ini, ambisi manusia yang tak pernah puas tentu cukup jelas. Untuk mendapatkan sumber cahaya yang lebih efisien, kita memerlukan komponen elektronik yang mampu mengubah lebih banyak lagi listrik yang diterimanya menjadi cahaya. LED adalah perangkat yang dimaksudkan. Faktanya, lampu putih LED terbaik saat ini bahkan mampu mengubah lebih dari 50% energi listrik menjadi cahaya.
Sialnya, puluhan tahun yang lalu hanya ada LED merah dan hijau. Hanya kurang LED biru saja untuk membuat sumber cahaya putih ataupun warna-warna lainnya dengan mengombinasikan warna merah, hijau, dan biru. Wajar jika penemuan LED biru oleh Akasaki, Amano, dan Nakamura menjadi terobosan terpenting dalam perkembangan dunia elektronik di akhir abad ke-20. Mereka dianggap telah menemukan batu bata yang selama ini hilang.
Teori semikonduktor yang menjadi prinsip kerja perangkat LED sebenarnya telah tersedia segera sejak mekanika kuantum pertama kali dirumuskan hampir seabad yang lalu. Dalam definisinya yang paling sederhana, semikonduktor merupakan material yang sifat listriknya berada di antara  konduktor dan isolator. Ciri khas dari semikonduktor adalah adanya celah energi (band gap) yang tidak terlalu besar dibandingkan dengan isolator sehingga memungkinkan transisi elektron secara kolektif dari satu tingkat energi ke tingkat lainnya.
Perbandingan kasar antara celah energi (Eg) pada isolator, semikonduktor, dan konduktor.
Perbandingan kasar antara celah energi (Eg) pada isolator, semikonduktor, dan konduktor.
Secara intrinsik, material semikonduktor seperti unsur-unsur golongan IV (karbon, silikon, germanium), ataupun senyawa golongan III-V (seperti GaN, BN, GaP) memiliki sejumlah elektron valensi pada kristal yang terlibat dalam ikatan kovalen sempurna yang membuat elektron-elektron tersebut tidak bisa bergerak dengan bebas. Oleh karena itu, kita perlu mengubah sedikit sifat kristal tersebut melalui sebuah proses yang disebut sebagai doping sehingga celah energi semikonduktor dapat dimanfaatkan sesuai kebutuhan.
Dalam proses doping, pada dasarnya kita mencampurkan sejumlah kecil ketidakmurnian (impurity) ke dalam kristal semikonduktor intrinsik. Ada dua macam ketidakmurnian ini, yaitu doping tipe-n dan doping tipe-p. Pada doping tipe-n, unsur golongan V ditambahkan ke dalam semikonduktor intrinsik sehingga menghasilkan elektron yang bebas bergerak ke sekitarnya. Pada doping tipe-p, unsur golongan III yang ditambahkan sehingga menghasilkan lubang yang tidak ditempati elektron (disebut hole), yang dapat dianggap sebagai muatan positif yang juga dapat bergerak.
Kegunaan semikonduktor sebenarnya baru muncul ketika kita memiliki semikonduktor tipe-n dan tipe-p. Beragam variasi struktur yang melibatkan semikonduktor tipe-n dan tipe-p akan menghasilkan perangkat elektronik yang berbeda-beda, mulai dari diode, transistor, sel surya, hingga IC (integrated circuit). Pemilihan material yang tepat dengan nilai celah energi tertentu dan kebutuhan akan struktur kristal berkualitas tinggi untuk setiap perangkat yang berbeda menjadi hal yang sangat krusial dan penting diperhatikan.
Diode merupakan perangkat semikonduktor paling sederhana yang mungkin dibuat. Diode dihasilkan dengan menyambungkan suatu semikonduktor tipe-p dengan semikonduktor tipe-n. Sebuah diode memungkinkan arus untuk mengalir pada satu arah, tetapi tidak pada arah sebaliknya. Barangkali kita pernah melihat pintu putar pembatas di stadion atau pusat perbelanjaan yang hanya bisa dilalui ke satu arah tertentu dan menghambat orang untuk bergerak mundur kembali ke arah sebelumnya. Nah, diode bisa dibayangkan seperti pintu tersebut.
Selanjutnya, agar diode dapat menjadi LED yang memancarkan cahaya, elektron dari semikonduktor tipe-n dan holedari semikonduktor tipe-p harus dapat bertemu (rekombinasi) sehingga terjadi transisi kuantum yang melepaskan energi dalam bentuk cahaya. Proses ini dapat terjadi dengan pemberian tegangan serta pilihan material semikonduktor yang tepat. Warna (atau panjang gelombang) cahaya yang dihasilkan bersesuaian dengan celah energi dari material semikonduktor yang digunakan.
Ilustrasi cara kerja LED (gambar diadaptasi dari nobelprize.org).
Ilustrasi cara kerja LED (gambar diadaptasi dari nobelprize.org).
Warna cahaya biru berkaitan dengan celah energi yang lebih besar dibandingkan dengan warna merah dan hijau. Oleh karenanya, proses rekombinasi elektron-hole pada material dengan celah energi yang besar memiliki kendala berupa kehilangan energi yang lebih besar untuk panas, alih-alih untuk cahaya. Hal ini terjadi sebagai akibat dari elektron dan hole yang tidak melakukan rekombinasi dengan sempurna. Satu-satunya cara untuk memperoleh rekombinasi sempurna adalah dengan memiliki material kristal berkualitas tinggi yang nyaris tanpa cacat.
Ketika Akasaki, Amano, dan Nakamura memulai penelitian LED biru, kandidat material dengan celah energi yang sesuai untuk warna biru adalah GaN (Galium nitrida). Namun, banyak peneliti menyerah untuk membuat kristal GaN berkualitas tinggi karena material ini cenderung punya banyak cacat dalam kristalnya. Apalagi ketika diberikan doping, GaN akan semakin rapuh. Selain itu, dengan cacat kristal pada GaN, konduktivitas elektron meningkat sehingga secara alami GaN lebih bersifat sebagai semikonduktor tipe-n. Tentunya sangat sulit untuk membuat GaN yang bersifat sebagai semikonduktor tipe-p agar dapat melengkapi struktur LED yang diinginkan.
Tanpa kenal menyerah, Akasaki dan Amano akhirnya menjadi orang pertama yang berhasil membuat kristal GaN berkualitas tinggi dengan metode yang disebut MOVPE (Metalorganic Vapour Phase Epitaxy) dengan terlebih dahulu menumbuhkan material AlN (Aluminium nitrida) di atas substrat safir. Struktur dasar ini memungkinkan penumbuhan GaN di atasnya pada temperatur sekitar 1000oC dengan kualitas yang sangat baik. Nakamura kemudian mengakali metode ini dengan mengganti AlN menggunakan lapisan tipis GaN pada temperatur lebih rendah dan dapat menghasilkan struktur kristal GaN yang lebih baik lagi.
Setelah mendapatkan kristal GaN berkualitas tinggi, proses penting berikutnya dalam penelitian LED biru adalah bagaimana caranya membuat GaN aktif bertipe-p. Pemberian ketidakmurnian saja rupanya tidak cukup. Lagi-lagi Akasaki dan Amano menjadi yang pertama menemukan (secara tidak sengaja) bahwa penembakan berkas elektron berenergi rendah pada proses doping GaN tipe-p merupakan proses yang penting dilakukan untuk membuat kristal GaN tipe-p meskipun mereka saat itu tidak tahu alasan di balik pentingnya proses tersebut.
Menariknya, lagi-lagi Nakamura pula yang datang dengan solusi lebih baik dan alasan mengapa penembakan berkas elektron berenergi rendah diperlukan dalam proses pembuatan GaN tipe-p. Ia mengemukakan bahwa unsur doping tipe-p normalnya membentuk senyawa kompleks dengan hidrogen sehingga membuat GaN tipe-p bersifat pasif meski sudah didoping. Penembakan berkas elektron akan membuat ikatan hidrogen terlepas sehingga GaN tipe-p dapat aktif menjalankan fungsinya.
Akhirnya, semua bahan dasar untuk membuat LED biru sudah tersedia. Racikan Akasaki dan Amano kemudian menghasilkan LED biru berbasis sambungan AlGaN/GaN, sedangkan Nakamura lebih memilih basis sambungan InGaN/AlGaN. Mungkin karena insting Nakamura yang berada di perusahaan, tidak seperti Akasaki-Amano yang berada di universitas, hasil penelitian Nakamura-lah yang lebih cocok untuk aplikasi komersial.
Perangkat elektronik berbasis LED saat ini dapat ditemukan di mana-mana, hampir di seluruh aspek kehidupan kita. Namun, ketika Akasaki, Amano, dan Nakamura bekerja keras 20-30 tahun yang lalu untuk membuat LED biru, mereka mungkin takkan pernah menyangka akan memasuki panggung penerima penghargaan Nobel, yang disoroti oleh lampu-lampu berbahan dasar LED. Di dalam lampu-lampu itu, LED biru menjadi batu bata terakhir yang pernah menjadi komponen yang paling sulit dibuat.

Prinsip-Prinsip Fisika pada Sayap Pesawat Terbang

Pernah memperhatikan pesawat terbang atau menumpanginya? Penulis yakin kebanyakan dari kita pernah melakukan paling tidak salah satu dari hal tersebut, baik itu terkait “pesawat terbang” yang seperti gambar berikut ini (maksudnya pesawat kertas):
ed29-fisika-1
ataupun yang berikut ini, Boeing 777-300ER terbaru milik Garuda Indonesia:
ed29-fisika-2
Di sini penulis akan memfokuskan pembahasan prinsip-prinsip fisika untuk tipe pesawat yang terakhir (ya iyalah… masa ya iya dong…). Pesawat ini jauh lebih besar, jauh lebih serius, dan seolah telah memperkecil dunia sejak pertama kali diluncurkan oleh Wright bersaudara pada tahun 1903 silam. Sejak peluncuran “mesin terbang” pertama di dunia saat itu, sudah ribuan “burung besi” dibuat dan diterbangkan di seluruh penjuru dunia. Hal ini tentunya sering menimbulkan rasa takjub bagi orang-orang yang memperhatikannya.
Robert L. Wolke, seorang profesor kimia yang juga penulis terkenal, telah menulis sebuah buku berjudul What Einstein Told His Barber: More Scientific Answers to Everyday Questions (dalam bahasa Indonesia berjudul Kalau Einstein Lagi Cukuran, Ngobrolin Apa Ya? Lebih Banyak Penjelasan Ilmiah untuk Peristiwa Sehari-hari). Dalam buku tersebut salahsatunya diulas tentang mekanisme terbangnya pesawat. Di dalam tulisannya ia mengakui, “I looked up in utter dis-belief at the four-hundred-ton monster that had just wafted me across the Atlantic Ocean at an altitude of more than five miles (eight kms) above Earth’s surface.”
Terkadang memang sulit bagi kita membayangkan bagaimana bisa sebuah bongkahan logam seberat empat ratus ton membawa kita terbang di udara selama berjam-jam pada ketinggian rata-rata 10 kilometer. Namun, jelas-jelas itu bisa terjadi, dan, ia terjadi tiap hari. Jadi kita tidak perlu bingung, segera akan dijelaskan bagaimana hal itu bisa terjadi.
Dari buku yang sama itu, penulis mengutip penjelasan yang akan disampaikan dalam tulisan ini. Pertama-tama, mari kita ingat-ingat sedikit, di pelajaran sekolah sudah banyak dibahas mengenai prinsip-prinsip fisika di balik terbangnya pesawat. Masalahnya, seringkali, kalau bukan selalu, para pelajar diarahkan untuk mempercayai begitu saja bahwa pesawat dapat terbang hanya karena sebuah prinsip yang dikenal dengan nama Prinsip Bernoulli. Prinsip ini, seperti sudah jelas dari namanya, dirumuskan oleh seorang matematikawan Swiss bernama Daniel Bernoulli (1700-1782), yang merumuskan konsep dinamika fluida dalam persamaan berikut:
p_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = p_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2
Bagi yang tidak familiar dengan fisika, jangan langsung mual. Ketiga suku pada masing-masing ruas persamaan ini hanya merunutkan tekanan (p) yang diberikan si fluida, energi gerak fluida per satuan volume (\rho v^2), dan energi potensial fluida per satuan volume (ρgh) pada dua buah titik yang berbeda (dinyatakan oleh indeks 1 dan 2).
Fakta alam yang ingin ditunjukkan oleh persamaan Bernoulli ini adalah, bahwa ketika sebuah fluida (entah apakah itu air, semilir angin, atau hasil buang gas orang di sebelah Anda) bergerak lebih cepat, tekanan fluida tersebut terhadap lingkungan sekitarnya akan berkurang. Kejadian ini mirip seperti seorang pelari, yang lebih sulit untuk mendorong orang di sampingnya daripada ketika ia berjalan normal.
Cukupkah Prinsip Bernoulli saja?
Lantas, apa hubungannya dengan pesawat terbang? Menurut orang-orang yang sudah puas dengan prinsip Bernoulli sebagai satu-satunya mekanisme di balik kemampuan pesawat terbang, sayap pesawat dirancang sedemikian rupa dengan bagian atas yang lebih melengkung dari bagian bawah (kenyataannya memang begitu). Dengan rancangan sayap semacam itu, menurut mereka, ketika udara melalui sayap pesawat, udara yang melintas di bagian atas akan melintas lebih jauh. Oleh karena waktu tempuh udara di atas sayap dan di bawah sayap sama (asumsi waktu transit sama), kecepatan udara diatas sayap lebih besar, yang berarti, tekanan di atas sayap lebih kecil daripada di bawah. Adanya perbedaan tekanan menyebabkan adanya gaya tekan udara, yang totalnya mengarah ke atas. Hal inilah yang diklaim menjadi sebab utama pesawat dapat terbang.
Penampang sayap pesawat dan diagram aliran angin di sekeliling sayap pesawat (gambar dari Boeing, Inc.)
Penampang sayap pesawat dan diagram aliran angin di sekeliling sayap pesawat (gambar dari Boeing, Inc.)
Sebenarnya teori tersebut hampir semuanya benar, kecuali untuk satu hal: asumsi waktu transit sama hampir tidak berlaku pada kenyataan sebenarnya. Tidak ada alasan penting bagi udara yang terpecah ke atas dan ke bawah sayap untuk kembali bertemu dalam waktu bersamaan. Dengan demikian, meskipun mungkin aliran udara di bagian atas sayap memang mengalir lebih cepat daripada di bawah sayap, perbedaan kecepatan yang ada tidak akan mampu untuk mengangkat pesawat ketika hanya prinsip Bernoulli yang diperhitungkan. Supaya perbedaan kecepatan itu bisa cukup besar sesuai prinsip Bernoulli, sayap pesawat harus dibuat sedemikian melengkung layaknya punggung paus! Namun, sayap yang seperti itu justru akan lebih membebani pesawat lagi sehingga akan jauh lebih sulit untuk sekadar mengangkat pesawat.
Prinsip apa lagi, dong?
Lalu, kalau bukan hanya karena Prinsip Bernoulli, lantas apa faktor utama yang menyebabkan pesawat bisa terbang? Sekarang serahkan tampuk penjelasan kepada Isaac Newton (1642-1727). Newton, sebagaimana banyak orang ketahui, terkenal terutama atas ketiga hukumnya mengenai gerak, dan juga karena hukum gravitasi-nya Newton (soalnya Einstein teori gravitasi yang lain). Ketiga hukum Newton ini amat berguna karena dapat diaplikasikan pada hampir semua kondisi di alam semesta, selama benda yang ditinjau tidak terlalu ringan (lebih ringan dari sebuah elektron) atau tidak bergerak terlalu cepat (mendekati kecepatan cahaya). Lalu, bagaimana hukum Newton diaplikasikan pada sayap pesawat terbang?
Sabar dulu… Begini… Rancangan sayap yang telah disebutkan pada penjelasan prinsip Bernoulli, selain membuat aliran udara yang sedikit lebih cepat di bagian atas sayap daripada di bagian bawah, ternyata juga menghembuskan udara yang dibelahnya ke arah bawah. Kok bisa? Ini semua bermula dari kenyataan bahwa sebuah fluida yang mengalir di permukaan sebuah benda lengkung akan cenderung untuk mengikuti bentuk lengkung benda (meskipun pada akhirnya akan menyimpangkan arah laju fluida) sebelum kemudian melanjutkan perjalanan. Efek ini dikenal dengan nama Efek Coandă, merujuk kepada ahli aerodinamika Henri-Marie Coandă (1885-1972). Contoh efek Coandă dalam kehidupan sehari-hari dapat kita lihat pada aliran air yang berbelok di sekitar lengkungan kepala sendok (kita bisa coba juga pada permukaan gelas).
Contoh efek Coandă.
Contoh efek Coandă.
 Sekarang bayangkan udara yang mengalir di atas dan di bawah sayap pesawat. Sayap pesawat membelah aliran udara menjadi ke atas dan ke bawah, dan sesuai dengan efek Coandă, udara yang mengalir di sayap pesawat akan mengikuti bentuk lekukan sayap tersebut. Disinilah kuncinya: Bentuk sayap yang sedemikian rupa membuat udara yang mengalir di atas ‘diarahkan’ sehingga secara umum lebih banyak udara yang dihembuskan ke arah bawah. Dari fakta ini, sesuai hukum 3 Newton, dengan adanya udara yang dihembuskan ke bawah oleh sayap, udara di bawah pesawat akan ‘balas mendorong’ pesawat. Nah! “Balasan” inilah yang menjadi gaya angkat pesawat!
α adalah “angle of attack” dari pesawat.
α adalah “angle of attack” dari pesawat.
Ah, ada satu faktor lagi. Jika kita lihat penampang melintang sayap pesawat, akan kita dapati bidang sayap pesawat tidaklah sejajar dengan tubuh pesawat, tetapi agak miring di bagian depan (yang disebut sebagai angle of attack) dengan sudut sekitar 4 derajat untuk pesawat-pesawat kecil. Dengan bentuk seperti ini, udara yang dilintasi pesawat akan sedikit ‘tertahan’ di bagian bawah sayap, yang akhirnya mendorong sayap ke atas. Efek serupa dapat kita jumpai jika kita merentangkan tangan keluar kaca jendela mobil yang melaju, dan menaikkan sisi yang menghadap arah angin sedikit. Akan ada dorongan yang cukup kuat ke atas. Prinsip-prinsip inilah, dengan sedikit kontribusi prinsip Bernoulli, yang menjadi faktor utama di balik terbangnya sebuah pesawat.

Transfer Energi Tanpa Kabel

Sebagian besar energi yang dialirkan manusia ke sana kemari adalah dalam bentuk listrik, yang mengalir pada kabel-kabel tembaga. Bahan ini memiliki banyak elektron yang mudah bergerak sehingga digunakan sebagai pipa untuk menyalurkan elektron. Jika kita tumpuk elektron di salah satu ujungnya, lalu tekan dengan tegangan listrik, elektron akan mengalir sampai ke ujung satunya lagi tanpa peduli berapa rumit bentuk kawat itu. Jalur-jalur tembaga ini kita lihat di mana-mana, mulai dari transmisi tegangan tinggi sampai jalur-jalur dalam papan sirkuit di komputer yang kita gunakan sekarang.
Apakah harus selalu dengan kabel?
Tembaga semakin lama makin mahal. Menara transmisi ditebangi dan kabel bawah tanah sulit sekali memasangnya. Sepertinya cuma di Indonesia, hutan ditebangi, menara listrik pun ditebangi. Meski demikian, pemandangan alam berupa sawah, bukit, rel kereta, jika digabung dengan menara listrik, memang tampak jelek sekali kelihatannya. Kalau energi itu bisa terbang begitu saja melalui udara kosong, mungkin tidak ada lagi keruwetan kabel.
Tunggu dulu, bukankah itu sudah lama terjadi? Bukankah energi matahari yang sampai ke sini terbang begitu saja dari sana ke sini dengan kecepatan cahaya melalui angkasa kosong? Ya, betul. Akan tetapi, matahari adalah bom nuklir besar yang sedang meledak terus-menerus, dan sepertinya kita tidak ingin meniru cara itu di sini (baca: fusi).
Transfer informasi versus transfer energi
Sudah lama kita mengenal pemancar radio yang mengirimkan gelombang radio, yang tentu mengandung energi, ditransfer dari puncak menara ke seluruh kota. Mungkin ada yang bertanya, mengapa kita tidak bisa melakukan hal serupa terhadap energi listrik? Untuk menjawab pertanyaan ini, perlu diperhatikan bahwa yang diutamakan dalam pemancar-pemancar semacam radio adalah transfer informasi, bukan transfer energi gelombang itu sendiri. Tidak peduli berapa kuat gelombangnya, yang diinginkan adalah bahwa handphone kita menerima sinyal berupa variasi kecil dalam gelombang radio. Kita bisa bicara sinyal lemah dan sinyal kuat. Namun, selama sinyal masih ada, kita tetap bisa mengirim SMS, menerima panggilan, dan mengakses hotspot.
Transfer energi sangat berbeda dengan transfer informasi. Dalam ulasan kita di sini, yang diinginkan dalam kemampuan transfer energi tanpa kabel adalah bahwa pemancar berkekuatan sekian kilowatt memancarkan gelombang elektromagnetik menuju penerima, kemudian energinya bisa digunakan untuk (misalnya) memasak nasi, tanpa kabel. Kita bisa bayangkan pula semacam setrika wireless. Masalahnya adalah bagaimana supaya energi yang dipancarkan hanya mencapai setrika, dan tidak televisi, telepon, dan orang? Tentu berbahaya jika orang kepanasan seperti layaknya kain terkena setrika hanya karena orang itu menerima energi dari pemancar radio.
Upaya realisasi transfer energi tanpa kabel
Mimpi manusia untuk membuat transfer energi tanpa kabel telah dirintis Nikola Tesla sekitar tahun 1900-an dengan menggunakan sebuah koil (yang dikenal dengan nama Tesla coil) untuk membuat tegangan tinggi di udara. Lampu TL yang dipegang di dalam area pengaruhnya akan menyala. Bahkan, orang yang menyentuh elektrode Tesla ini akan… sudahlah, tak usah dibicarakan. Selanjutnya, Tesla meneliti cara penyaluran energi dengan membuat gelombang berdiri di antara Bumi dan ionosfer, melalui Bumi, dan media alam. Namun, berdasarkan fakta bahwa sekarang kita tidak menggunakan alat-alat listrik semacam Tesla coil, tentunya hasil-hasil percobaan Tesla entah bagaimana berakhir tidak sesuai harapannya.
Contoh Tesla coil di pusat sains dan teknologi Australia.
Contoh Tesla coil di pusat sains dan teknologi Australia.
Bagaimanapun, di abad ini orang-orang mulai mencoba kemungkinan lain. Salah satu solusi adalah dengan gelombang mikro. Ingat bahwa gelombang mikro di dalam oven terbang dari pemancar di pojoknya menuju makanan yang sedang dimasak. Beberapa penelitian membuat antena pemancar besar dengan penguatan (gain) yang tinggi (artinya pancarannya terarah) dan antena penerima yang sebanding. Daya sebesar puluhan kilowatt berhasil diterbangkan melalui udara kosong sejauh beberapa kilometer dengan efisiensi mencapai 90%. Dengan versi yang lebih kecil, orang sudah bisa membuat pesawat terbang kecil yang mendapat tenaganya dari pemancar microwave semacam itu (lihat juga Microwave Power Transmission di Wikipedia).
Selanjutnya, muncul banyak pertanyaan. Bagaimana dengan hal-hal yang bisa mengganggu? Gelombang mikro berukuran mikro, demikian pula tetes air hujan dan kabut. Ketika gelombang menemui penghambur yang ukurannya berdekatan dengan panjang gelombang, apakah ia akan tersebar seperti cahaya biru di langit biru? Bagaimana supaya makhluk hidup yang melanggar jalur gelombang tidak matang seperti dalam oven microwave? Untuk mengatasi masalah ini diameter antena harus dibuat besar sekali supaya daya tersebar pada luas penampang besar. Jika daya 100 kilowatt tersebar pada luas penampang 1000 meter persegi, seorang anak manusia dengan luas penampang 1 m2 akan menerima daya 100 watt (intensitas cahaya matahari adalah 1366 W/m2).
Salah satu aplikasi yang terpikirkan para peneliti berdasarkan transfer energi model ini adalah dengan membuat pembangkit listrik di luar angkasa. Panel surya mengubah cahaya menjadi listrik, listrik menjadi microwave,microwave terbang ke bumi dan diubah jadi listrik lagi. Jika luas penampang berkas gelombangnya cukup besar (juga antenanya), rapat daya per satuan luas menjadi tidak berbahaya. Kita bisa pasang penerimanya di Samudra Pasifik sana yang tidak ada kapal lewat (baik kapal laut dan kapal terbang) ataupun awan yang mengganggu.
Kemudian ada mimpi tentang laser. Sumber laser bertenaga megawatt sudah bisa dibuat, tinggal penerimanya yang belum. Panel surya sekarang baru bisa mengubah 50 persen energi cahaya menjadi listrik. Tunggu sampai para ilmuwan nanoteknologi bisa membuat antena berukuran nanometer, nanti kita akan melihat antena penerima cahaya. Bagaimanapun, masalah benda-benda penghalang juga belum terpecahkan.
Model pesawat terbang bertenaga laser (proyek NASA).
Model pesawat terbang bertenaga laser (proyek NASA).
Model transfer energi yang telah dijelaskan di atas adalah untuk transfer energi jarak jauh. Untuk jarak dekat, seperti dalam rumah, transfer energi tanpa kabel juga bisa bermanfaat. Cara yang sudah dikembangkan orang adalah, tanpatesla coil, kita bisa membuat pemancar radio yang tidak memancarkan radiasi elektromagnetik, tetapi gelombangevanescent. Radiasi artinya memancar sampai jauh, sedangkan evanescent artinya menghilang pada jarak dekat.
Misalkan panjang gelombang yang dipakai adalah 10 meter, maka medan gelombang evanescent hanya akan ada pada radius beberapa meter. Penerimanya adalah sistem L-C yang memiliki frekuensi resonansi sama dengan pemancar. Jika penerimanya berada dalam jangkauan medan gelombang evanescent, akan timbul energi dalam rangkaian penerima yang sepertinya loncat begitu saja dari pemancar. Karena penerimanya harus beresonansi dengan pemancar, berarti benda yang tidak beresonansi dengan pemancar, seperti manusia, tidak akan menerima energi.
Aplikasi transfer energi jarak dekat sekarang ini sedang marak dikembangkan. Salah satunya oleh perusahaan dengan nama WiTricity, kependekan dari wireless dan electricity. Mungkin setelah membaca tulisan ini teman-teman berminat mengembangkan hal serupa di tanah air.


Lampu Bohlam Versus Lampu Neon

Lampu bohlam sebagai salah satu produk paling awal industri perlistrikan tentu sangat populer digunakan di rumah-rumah warga. Namun, lampu bohlam memakan daya listrik yang cukup besar. Lampu neon (yang sebenarnya juga muncul tidak lama setelah penemuan lampu bohlam) diketahui memakan daya listrik yang lebih sedikit dibandingkan lampu bohlam. Hanya saja, bentuk lampu neon yang selalu panjang-panjang saat itu tidak sepraktis sekarang sehingga mungkin tidak menarik minat banyak pengguna. Harganya pun cukup mahal dibandingkan lampu bohlam.
Sekarang, seiring dengan penelitian yang semakin berkembang, lampu jenis lain yang lebih hemat energi bernama lampu LED pun mulai ramai digunakan. Harga lampu neon dan lampu LED juga jauh lebih murah dibandingkan dulu saat belum ramai digunakan. Tentu kita penasaran fenomena apa yang membedakan lampu-lampu ini. Namun, dalam tulisan ini kita membatasi pembahasan pada perbedaan mendasar dari lampu bohlam dan lampu neon.
Lampu bohlam dan lampu neon.
Lampu bohlam dan lampu neon.
Oya, sebelumnya, perlu diketahui bahwa lampu “neon” lebih tepat disebut sebagai lampu flurosens (fluorescent lamp) karena tidak selalu gas neon yang menjadi pengisi lampu itu. Namun, berhubung kita mengikuti istilah yang lazim digunakan, kita tetap menyebutnya lampu neon untuk menggambarkan jenis lampu flurosens secara umum. Di sisi lain, nama bohlam mungkin berasal dari singkatan bola lampu dan wolfram (atau tungten) sebagai filamen pengisi bola lampu tersebut.
Prinsip lampu bohlam dan lampu neon sebenarnya sama, yaitu memanaskan filamen.  Lebih lanjut lagi, untuk membantu pemancaran cahaya yang lebih baik, lampu bohlam dan lampu neon juga sama-sama menggunakan gas inert di dalam tabungnya. Kalau begitu, apa dong yang membedakan keduanya?
Saat kita menyalakan lampu bohlam, arus akan mengalir melalui filamen berupa tungsen. Arus tersebut menyebabkan tungsten memanas. Panas dari aliran elektron ini menyebabkan atom-atom pada kristal bergetar dan elektron yang terikat pada atom meloncat ke tingkat energi yang lebih tinggi. Saat elektron yang terikat kembali ke tingkat energi semula, kelebihan energi yang dimiliki elektron akan “dibuang” dalam bentuk foton, yaitu partikel cahaya. Dengan kata lain, proses ini membuat filamen jadi berpijar.
Foton yang dihasilkan pada proses pemanasan lampu bohlam berkisar pada rentang cahaya tampak dan infra merah. Pada temperatur tinggi, filamen ini akan menghasilkan lebih banyak cahaya tampak dari pada infra merah. Itulah sebabnya tungsten dipilih sebagai filamen pada lampu bohlam karena memiliki titik leleh yang tinggi. Selain itu, bohlam diisi dengan gas inert agar filamen tungsten tidak teroksidasi dan rusak.
Bagaimana dengan prinsip kerja lampu neon? Proses pertama yang terjadi ketika lampu neon dinyalakan adalah “meloncatnya” elektron dari katode. Elektron-elektron ini akan menumbuk dan mengionisasi gas neon (atau gas inert lainnya) yang terdapat di dalam tabung. Arus yang dihasilkan dari ion-ion ini menguapkan raksa. Raksa yang telah menjadi uap kemudian bertumbukan dengan ion dan juga elektron, menyebabkan elektron yang terikat di atom raksa tereksitasi ke tingkat yang lebih tinggi. Elektron ini kemudian akan terelaksasi sambil memancarkan sinar UV (ultraviolet).
Sinar UV? Berbahaya dong? Tunggu dulu, di sinilah fungsi lapisan putih pada tabung kaca. Lapisan ini akan menyerap sinar UV. Di lapisan ini kembali terjadi proses eksitasi elektron yang disusul oleh emisi foton akibat relaksasi elektron. Kali ini rentang frekuensi dari foton ada pada daerah cahaya tampak. Tidak semua sinar UV itu berbahaya, bahkan ada yang dibutuhkan oleh tubuh.
“Itu listrik kan jadi lebih irit bila bohlam diganti dengan neon
Lampu bohlam memiliki rentang frekuensi pada cahaya tampak dan inframerah, sedangkan cahaya infra merah tidak dibutuhkan untuk penerangan. Beda halnya dengan lampu neon yang mampu mengubah cahaya tidak tampak (sinar UV) menjadi cahaya tampak dengan bantuan dari lapisan putih pada lampu neon.
Selain memancarkan banyak cahaya yang bukan pada daerah tampak, lampu bohlam juga terlalu banyak “memakan” listrik menjadi panas pada filamen tungsten yang digunakannya. Faktor sedikitnya keluaran cahaya yang “bermanfaat” dan produksi panas itu membuat lampu bohlam lebih boros daripada lampu neon.
Lampu bohlam biasanya mampu bertahan dipakai hingga seribu jam penerangan, sedangkan lampu neon bisa sampai 15 ribu jam. Sebuah lampu neon bisa menghasilkan cahaya dengan kecerlangan 50-100 lumen per watt, sedangkan lampu bohlam hanya sekitar 15 lumen per watt karena sudah banyak energi yang terbuang untuk panas. Itulah sebabnya lampu neon yang berspesifikasi daya 15 watt saja mampu menerangi kamar kita seterang lampu bohlam 60 watt.
Pada lampu neon, adakah sinar UV yang lolos? Kebanyakan sinar UV akan diserap dan menjadi cahaya tampak oleh lapisan fosfor. Pada kenyataannya, sinar UV tetap dihasilkan oleh lampu neon walaupun dengan intensitas kecil. Bahkan, saat ini ada lampu neon (tepatnya lampu flurosens) dengan spektrum yang mirip spektrum pancaran matahari. Lampu dengan rentang sinar UV ini sengaja ditemukan untuk membantu produksi vitamin D pada “orang-orang kantoran”.

Pembalikan Medan Magnet Bumi

Menyaksikan kedahsyatan bencana alam tanggal 26 Desember 2004 lalu, banyak orang mencari sebab terjadinya ketidakstabilan lempengan Bumi. Peringatan tentang kiamatnya dunia, ilmuwan amatir percaya bahwa pembalikan medan magnet Bumi ada kaitannya dengan bencana ini.
Para ilmuwan telah mengamati perubahan arah magnet Bumi yang sekarang sedang terjadi sebagaimana telah terjadi di masa silam. Situs web NASA memuat peta tentang perubahan arah Utara dari masa 150 tahun yang lalu hingga kini. Karena telah begitu lama waktu sejak terakhir kalinya terjadi, banyak yang percaya kita berada di awal masa perubahannya. Bagaimanapun Bumi membutuhkan waktu paling sedikit 5000 tahun hingga 50 juta tahun. Sepertinya tidak tepat untuk berasumsi bahwa bencana ini disebabkan oleh perubahan arah medan magnet Bumi.
Tidak hanya arah, tetapi kekuatan dari medan magnet juga menjadi perhatian. Pada masa dinosaurus menguasai Bumi, kekuatannya 2,5 Gauss sekitar 80% lebih kuat daripada sekarang. Mungkin itulah kenapa ada kehidupan yang berukuran raksasa seperti dahulu. Teori tentang punahnya seluruh binatang raksasa oleh satu bencana besar telah banyak diterima tetapi ada yang aneh seperti punahnya mamalia berukuran besar seperti mammoth yang masih menjadi misteri.
Ukuran binatang yang lebh kecil sekarang mungkin sebagai akibat dari melemahnya medan magnet Bumi. Ribuan tahun yang lalu saat bangsa Cina dengan pengetahuannya tentang energi bio-elektrik dikenal sebagai “meridian”, menyebutkan medan magnet mempengaruhi bentuk kehidupan. Bangsa ini menggunakan batu-batu bermagnet untuk pengobatan. Dalam abad terakhir ada lebih banyak pengurangan kekuatan medan magnet Bumi hingga 5% sehingga sekarang cuma tinggal 0.5 Gauss. Hal ini telah membuat Dr. Dean Bonlie untuk menyebutkan “sindrom kekurangan magnet” untuk kasus stress biologis.
Melemahnya medan magnet Bumi dipercaya sebagai awal dari pembalikan arah medan magnet Bumi. Pada masa lalu kejadian ini telah dikonfirmasikan pada catatan geologi. Yang belum jelas adalah bagaimana kejadiannya dan apa yang terjadi pada kehidupan di permukaan Bumi saat itu.
Apakah medan magnet Bumi dapat melemah hingga 0 Gauss? Prediksi paling pesimis menyebutkan peralatan elektronik akan terkena resikonya : antara rusak atau tidak dapat digunakan sama sekali, seluruh satelit akan hilang termasuk stasiun angkasa. Efek bagi kehidupan biologis meliputi dari burung yang kehilangan arah migrasinya hingga penurunan sistim kekebalan tubuh dan tingginya kasus kanker.
Lebih parah lagi, atmosfir akan menipis dan turun sehingga membuat sindrom ketinggian di dekat permukaan laut bahkan pancaran sinar kosmis yang mematikan akan membunuh sebagian besar mahkluk hidup di permukaan Bumi. Hanya yang tinggal di gua-gua di dalam Bumi akan bertahan. Skenario ini telah membuat sejumlah orang membangun bunker bawah tanah dengan harapan untuk bertahan.
Melawan pandangan mengerikan ini, NASA meramalkan bahwa tidak menjadi 0 Gauss, tetapi medan magnet Bumi akan kacau. Saat itu kita akan memiliki lebih dari satu Kutub Utara dan satu Kutub Selatan. Laporan ilmiah resmi menyebutkan atmosfi tidak akan menghilang dan komunikasi hanya akan terganggu dan menjelang saat itu manusia akan menemukan cara untuk bertahan. Tetapi ada yang menentang, mengingat anomali magnet di Atlantik Selatan dan kerusakan akibat radiasi pada satelit yang beredar di daerah itu dikatakan sebagai akibat dari hilangnya atmosfir.
Teori ini didukung oleh bukti geologi bahwa saat pembalikan terakhir, atmosfir tidak hilang. Aliran lava dari Gunung Steen memperlihatkan kutub magnet berputar mengelilingi lingkaran tropis tiga kali. Meskipun kekuatannya berkurang hingga 20% tetapi tidak pernah menjadi 0 Gauss.
Teori bahwa aktivitas dari inti luar Bumi yang terbuat dari logam yang meleleh menyebabkan terjadinya medan magnet sedang hangat dibicarakan oleh ilmuwan. Aktivitas jauh di bawah inti Bumi dipercaya dapat menyebabkan pergerakan lempengan Bumi dan menyebabkan gempa.
Ada teori alternatif tentang terjadinya medan magnet Bumi. Ernest McFarlane dalam artikelnya “Asal muasal medan magnet Bumi” menyebutan sebuah sistem yang terbuat dari sel-sel elektronik di dalam inti logam yang mengkristal dengan titik-titik panas dari logam berat yang memancarkan partikel Alpha dan Beta. Karena suhu yang tinggi partikel Alpha tidak dapat menyatu dengan elektron bebas. “Akibatnya terjadi putaran dari dalam dan luar inti… medan magnet tercipta sebagai akibatnya”.
Teori mana yang benar? Mungkin kita sendiri yang akan mengalaminya.
Matahari mengubah medan magnetnya seperti putaran jam setiap 11 tahun di puncak siklus sunspot. Siklus terdekat diperkirakan terjadi tahun 2012. Sunspot (bintik Matahari) adalah magnet yang lebih kuat bahkan dari intinya yang secara terus menerus bergerak. Walaupun kejadian seperti ini tidak banyak dipahami, peneliti angkasa Ulyssess telah mengirimkan sejumlah data yang dapat menjawab banyak pertanyaan.
PES Network berusaha untuk menarik orang-orang di seluruh dunia untuk berpartisipasi dalam pengumpulan data medan magnet. Sebuah situs web diPESWiki.com telah dibuat untuk kepentingan ini. Anda disarankan untuk membuat “garis dasar” dengan menentukan arah Utara akurat untuk lokasi Anda dan melaporkan derivasi dari arah dan derajat dari arah dasar tadi.
Seorang sukarelawan dari Kanada bagian Barat yang menggunakan kompas besar buatan sendiri menemukan variasi sebesar 10 derajat dalam beberapa hari. Karena heran sukarelawan ini meminjam kompas sensitif dan menemukan anomali ini memang terjadi.